月亮链 月亮链
Ctrl+D收藏月亮链
首页 > DOT > 正文

BSP:为以太坊引入 KZG 承诺:工程师视角(下)_bspt币未来前景

作者:

时间:1900/1/1 0:00:00

干货 | 为以太坊引入 KZG 承诺:工程师视角(上)

(续前)什么是 KZG10 承诺?

注 3.6:如果启动设置所计算的 [s],[s^2]…[s^d] 只计算到了指数 d,这一组值是不能用来生成任何阶数大于 d 的多项式的承诺的。反之亦然。

因为在安全的曲线上,没有办法用两个点相乘来得出第三个点,所以 [s^(d+k)] 是一个(永远!)无法求出的值,因此可以说,任意的承诺 c(f) 都只能表示一个阶数小于等于 d 的多项式。

注 3.7:使用 KZG10 承诺的证据基本上就是在证明 f(x) - 某些余数 的结果可以按特定的办法来分解,但这就要有一种办法可以 相乘 这些因数,并与原始的承诺相比较 C(f)=f([s])。

为此,我们需要 “配对方程”,就是一种能把曲线上的两个点相乘并与另一个曲线点比较的乘法,因为我们无法直接让这两个曲线点直接相乘来得到合成的曲线点。

注 3.8:上述两个属性,可以进一步用来证明某个承诺 c(f) 所代表的多项式 f(x) 的阶数 k 小于 d。

综上,KZG10 承诺可以有很好的属性:

验证承诺的过程是:(由区块生成者)提供底层多项式在任意点 r 上的值 y=f(r) ,以及除法多项式 q(x)=(f(x)-y)/(x-r) 在 [s] 点的值(即 q([s])),并用 配对方程 来对比之前所提供的承诺 f[s]。这就叫 开启 在 r 点的承诺,而 q([s]) 就是证据。容易看出,q(s) 就是 p(s)-r 除以 s-r ,恰好就是我们用配对方程来检查的东西,即检查 (f([s])-[y]) * '= q([s]) * [s-r]' (译者注:此处疑为 f(s)-r ,但原文就是 p(s)-r)。

V神:多维度定价可以最优化Gas成本并为以太坊增加另一层DoS保护:1月6日,以太坊创始人Vitalik Buterin(V神)发起提案探讨“对交易手续费进行多维度定价”的可能性。他表示,在EVM中,对多种资源都有着不同的限制,如占用EVM的计算时长、区块数据、见证数据、状态大小。当前的资源定价模式是简单地将这种资源抽象为Gas,无法实现Gas成本的最优化。此前社区对多维度定价的主要反对意见是,这会提高打包区块的门槛,导致矿工的中心化问题。V神认为,在MEV以及EIP1559之后,这些反对意见的忧虑已经得到很大程度的减缓,而且多维度定价这种模式,除了最优化Gas成本,也将为以太坊增加另一层DoS保护。[2022/1/6 8:29:42]

在非交互且确定性的版本中, Fiat Shamir Heuristic 提供了一种办法来获得相对随机的点 r:因为随机性只跟我们尝试证明的输入有关,即,只要已经有了承诺 c=f([s]) ,r 就可以用哈希所有输入(r=Hash(C,..))来获得,而 承诺的提出者 要负责提供 开启点 和 证据。

使用预先计算好的拉格朗日多项式,f([s]) 和 q([s]) 都可以在 求值形式 下直接计算。要计算 r 处的开启值,就需要把 f(x) 转为 f(x)=a0+ a1*x^1.... 的系数形式(也即抽取出 a0、a1、…)。可以通过 反向快速傅立叶变换 来实现,复杂度为 O(d log d),但甚至这里也有一种可用的替代算法,在 O(d) 的复杂度内完成计算,而无需使用反向快速傅立叶变换。

你可以使用单个开启点和证据来证明 f(x) 的多个值,也就是多个索引值对应的数值, index1=>value1、index2=>value2 …

MyEtherWallet为以太坊2.0推出应用内质押服务:金色财经报道,通过与节点托管服务Staked合作,MyEtherWallet现在为其浏览器和移动钱包用户提供了将ETH质押到以太坊2.0信标链存款合约中的服务。MyEtherWallet用户需要投入32 ETH才能参与,Staked将为他们运行一个验证器节点。[2020/12/9 14:38:02]

(用于计算证据的)除法多项式 q(x) 现在变成了 f(x) 除以零多项式 z(x) =(x-w^index1)*(x-w^index2)...(x-w^indexk) 的商

余数为 r(x) ( r(x) 是一个最大阶数为 k 的多项式,由 index1=>value1, index2=>value2 … indexk=valuek 插值而成)

检查 ( f([s])-r([s]) )* ' = q([s]) * z([s]')

在 PoS 链的共同起步设置中,共享的数据块会被表示为低阶的多项式(并为了 纠删码 而使用同样的 拟合 多项式扩展为两倍大),KZG 承诺可以用来检查任意 随机 分块并验证和确保 数据可得性,而无需获得 兄弟数据点。这就开启了随机取样的可能性。

现在,对于一个最大可能包含 2^28 个账户键的状态,你需要至少 2^28 阶的多项式来构建 扁平的 承诺(flat commitment)(实际上的账户键总空间会大得多得多)。在更新和插入的时候,会有一些不便利。对任一账户的任意更改,都会触发承诺(以及更麻烦的,见证数据/证据)的重新计算。

开发者为以太坊开源节省Gas费用的聚合工具GasSaver:开发者EmilianoBonassi发布为以太坊交易节省Gas的智能合约套件GasSaver。通过接入GasSaver,开发者可以调用1inch开发的Chi或者GasToken2的代币,之后交易中的部分Gas就可以使用这两种代币进行支付,节省整体Gas消耗。[2020/8/10]

更新 KZG10 承诺

对任一 索引值 => 数值 点的任何更改,比如更改了 indexk,都需要使用相应的拉格朗日多项式来更新承诺。复杂度约为每次更新 O(1)。

但是,因为 f(x) 本身也改变了,所以所有的见证 q_i([s]) ,也即所有对第 i 个键值对的见证,也需要更新。总复杂度约为 O(N)

如果我们没有维护预先计算好的 q_i([s]) 见证,任何一条见证数据都要从头开始计算,都需要 O(N)

一种复杂度为 sqrt(N) 的更新 KZG10 承诺的构造

因此,为了实现理想承诺方案的第四点,我们需要一个特殊的构造:Verkle trie。

需要表示的以太坊的状态大约有 2^28 约等于 16^7 约等于 2.5 亿 个键值对。如果我们只使用扁平的承诺(那么我们需要的阶数就至少是 2^28)。虽然我们的证据永远是 48 个字节的椭圆曲线元素,但任意的插入或更新,都需要 O(N) 次操作来更新所有预先计算好的见证数据(也就是所有点的 q_i(s) ,因为 f(x) 本身已经改变了);甚至于,如果没有预先计算好的见证数据,则每条见证数据都需要花 O(N) 来重新计算。

动态 | Tezos基金会CSO表示可为以太坊基金会任何项目提供资金:以太坊项目的工作人员之一Nina Breznik在推特表示,以太坊基金会计划从2020年开始停止为其大部分内部团队提供资金。Nina团队称自己是以太坊基金会成员,过去两年来,在过去的2年里一直致力于Remix。对此,Tezos基金会CSO和理事会成员Ryan Lackey表示,该组织已准备好以跨区块链的方式为以太坊基金会的任何项目提供资金。(newslogical)[2019/12/7]

因此,我们需要把扁平的结构换成叫做 Verkle 树 的结构,跟默克尔树一样是树结构。

即,像默克尔树一样,构建出一棵承诺树,这样我们就可以保证阶数 d 比较小(但也需要高达约 256 或者 1024)。

每个父节点都编码对其子节点的承诺,子节点就是一个映射,其索引值都存在其父节点内

实际上,父节点的承诺编码了哈希后的子节点,因为承诺的输入是标准化的、32 字节的值(见上文的 注3.0)。

叶子节点编码了对其所存储的数据的 32 字节哈希值的承诺;或者直接跳转到数据,假如其 32 字节的数据的用法与下一章提到的 状态树 提议用法一样的话。

要提供对一个分支的证据(类似于默克尔分支证据)时,一个多值证明的承诺 D、E 可以围绕使用 fiat shamir heruristic 产生一个相对随机的点 t 来生成。

复杂度

这里是一份对 Verkle 多值证明的分析

更新/插入 叶子节点 index=>value 需要更新 log_d(N) 个承诺 ~ log_d(N)

动态 | Rivet将为以太坊钱包MyEtherWallet提供隐私优先的节点服务:以太坊钱包MyEtherWallet(MEW)宣布与Rivet建立新的合作伙伴关系,以满足其区块链基础设施的需求。Rivet提供了一种隐私优先的节点服务,旨在快速、准确、可靠地连接以太坊区块链。(CryptoNinjas)[2019/11/22]

为生成证据,证明者需要

计算 f_i(X)/(X-z_i) 在 [s] 处的值,用于生成 D ,复杂度总计 O(d log_d N),但可以在 更新/插入 时调整以节约预计算,复杂度会变成O d log_d(N)

计算 m 个 ~ O( log_d(N) ) 个 f_i(t) 来计算 h(t),总计为 O (d log_d N)

计算 π, ρ ,需要对 m~ log_d N 个指数多项式的和做除法。需要约 O(d log_d N) 来获得分子的求值形式,以计算除法

证明的规模(包括用于计算 E 的分支承诺)加上验证的复杂度 ~ O( log_d(N) )

被提议的 ETH 状态 Verkle 树

单一的树结构,存储账户的 header 和 代码分块,还有 存储项分块,节点的承诺为阶数 d=256 的多项式

把地址和 头/存储空档 结合起来推导出一个 32 字节的 storageKey,本质上就是元组 (address,sub_key,leaf_key) 的一种表示

所推导的键的前 30 个字节用于构建普通的 verkle 树节点 pivots

后 2 个字节是一个树高为 2 的子树,表示最多 65536 个 32 字节的分块

对于基本的数据,这个树高为 2 的子树最多有 4 个叶子承诺,来覆盖 haeader 和 code

因为一个分块为 65536*32 字节的分块表示为单个的字数,所以主树上可能有许多子树来存储一个账户

Gas 定价方案

访问类型 (address, sub_key, leaf_key) 的事件

每一个专门的访问事件都收取 WITNESS_CHUNK_COST

每个专门的 address,sub_key 组合都收取额外的 WITNESS_BRANCH_COST

代码默克尔化

代码会自动成为 verkle 树的一部分(作为统一的状态树的一部分)

一个区块的 header-ukjx 和 code 都作为一个树高为 2 的承诺树的一部分

单个分块最多有 4 条见证数据,分别收取 WITNESS_CHUNK_COST,访问账户需要收取一次 WITNESS_BRANCH_COST

ETH PoS 的目标之一是能够提交约 1.5MB/s 的数据量(把这个吞吐量理解为状态变更的吞吐量,因而是 L2 rollup 可以利用的交易吞吐量,最终是 L1 EVM 的吞吐量)。要实现这一点,许多并行的区块提议要能发出并在给定的 12 秒内验证;也就是要存在多条分片(约 64),每个分片在每个 slot 都要发布自己的数据块。若有大于 2/3 的投票支持,信标链区块将包含分片数据块,分叉选择规则也将根据信标链区块内所有数据块及其祖先的数据可得性确定它是否能成为主链区块。

注 3:此时的分片不是链,任何隐含的顺序都要由 L2 协议来解释。

KZG 承诺也可以用来构建数据有效性和可得性方案,客户端无需访问分片提议者发布的完整数据就可以校验其可得性。

分片数据块(不带纠删码)是 16384 个样本(每个 32 字节),约为 512 kb;还有数据头,主要由这些样本相应的最大 16384 阶的多项式承诺组成

但多项式求值形式 D 却有 2^16384 的规模,即,1,w^1,…w^,… w^32767,而 W 是 32768 的单元根(不是 16384 的)

我们可以为数据(f(w^i)=sample-i for i<16384)拟合出最大 16384 阶的多项式,并扩展到 32768 作为纠删码样本,即计算 f(w^16384) … f(w^32767)

对每个点的值的证明也同时计算并与样本一起发布

32768 个样本中获得任意 16384 个都可以完全恢复出 f(x) 以及原始的样本,即 f(1),f(w^1),f(w^2)… f(w^16383)

这纠删编码的 32768 个样本分为 2048 个分块,每个分块包含 16 个样本,即 512 字节的数据;由分片提议者水平地发布,即将第 i 个分块以及相应地证据发给第 i 个垂直子网络,外加全局公开完整数据的承诺

在被指定的 (shard, slot),每个验证者都在 k~20 个垂直子网中下载和检查这些分块,并使用对应数据块的承诺来验证它们,以建立数据可得性保证

我们需要为每个 (shard, slot) 安排足够多的验证者,使得总体上一般(乃至更多的数据)都被获取了;另外,还要满足一些统计学上的要求,每个 (shard, slot) 约 128 个委员,需要有至少 70 个(也即 2/3 )委员的见证,使得该分片数据块能成功打包到信标链上,

至少需要约 262144 个验证者(32 个 slot,乘以 64 个分片,再乘上至少 128 个委员)

如我们在 POC verkle go 代码库中看到的,以状态树的规模构建完一次 verkle 之后,插入和更新都非常快:

插入/更新 的基准测试

证明生成验证的基准测试

标签:BSPNBS以太坊GASbspt币未来前景NBS价格以太坊最新价格行情分析bnb局gas费

DOT热门资讯
OSA:Osasion欧赛超级节点FDRPC协议诞生的意义和价值_BitcoinPoS

近期,Osasion欧赛热度最高的莫过于超级节点相关工作事宜。目前,很多超级节点已获得首期GAS分配,获得的收益也相当可观,但相信很多超级节点看完文件可能也有些不知所云.

1900/1/1 0:00:00
以太坊:波卡凭借什么样的架构 让所有区块链都能接入其中_KUSA

“波卡知识图谱”是我们针对波卡从零到一的入门级文章,我们尝试从波卡最基础的部分讲起,为大家提供全方位了解波卡的内容,当然这是一项巨大的工程,也充满了挑战.

1900/1/1 0:00:00
比特币:别陷入美联储通胀的“甜蜜”陷阱 也别把它当做选择比特币的理由_Binance Multi-Chain Capital

为什么比特币持有者需要远离1970年代的通胀理论下面绘制的第一张图表看似简单,但却极为重要。我甚至想说,这是2021年至今最重要的图表,需要完全内化。(因为)这是透过近期混乱经济数据噪音的信号.

1900/1/1 0:00:00
比特币:金色硬核 | 哪些政府和机构在持有比特币?持有多少_COIN

加密货币行业从业人士总在说,2020-2021年这一波比特币大牛市是机构牛。比如灰度比特币信托持有的比特币从2020年初的10多万持续增加到60多万枚,MicroStrategy持续投入近30多.

1900/1/1 0:00:00
OMN:英伟达逐梦元宇宙_VERS

2020年7月8日,载入人类科技史的一天,英伟达市值首次超越英特尔,成为全美最大芯片企业,似乎是一种宣告:一个时代结束了,另一个时代开始了.

1900/1/1 0:00:00
MLB:美职棒大联盟MLB与FTX达成合作 建立“长期伙伴关系”_WALL

美国职棒大联盟(MLB)宣布与FTX交易所建立「长期伙伴关系」。 MLB会将在美国境内和FTX.US合作,在国际上与FTX.com合作。这是MLB史上第一次和加密货币交易所达成合作协议.

1900/1/1 0:00:00