在过去的一年中,zk-SNARK的进展超出了预期。尽管普遍共识认为这些创新还需要数年时间,但应用程序,如ZK-EVM,正在出现。zk-SNARK的增强功能已使得探索区块链的新用例成为可能,尤其是,我们正在密切关注使用zk-SNARK解决由机器学习和人工智能增加使用带来的许多紧迫问题的研究。
随着机器学习的普及,它正在广泛应用于各种应用程序中。然而,其预测的可信度以及对不透明数据源的依赖性成为了一个主要问题。复制声称具有高准确度的模型的能力很难,而在实际产品中预测的一致性和正确性也没有保证。
本文旨在简要介绍为什么对基于zk-SNARK的机器学习系统产生了浓厚的兴趣,并讨论了该技术的一些潜在应用。
LinksDAO证实已中标苏格兰高尔夫俱乐部:金色财经报道,全球高尔夫爱好者社区LinksDAO,今天证实它赢得了购买苏格兰斯佩湾高尔夫俱乐部的竞标。 LinksDAO 在推特上说,“我们中标了。我们要买一个高尔夫球场!!!”最终收购价格未知。在首次尝试收购高尔夫球场时,LinksDAO于二月份进行了投票,并获得了参与者的支持。
在年初仅 24 小时内售出 9,000 多个 NFT 后,LinksDAO 筹集了价值约1,100 万美元的以太坊。此次购买是 DAO 出售具有现实世界效用的 NFT 的最重要示例之一,社区成员可以使用这些 NFT 参与购买和管理有价值的实物资产。[2023/3/17 13:09:11]
为什么需要ZK-ML?
Treasure DAO将于6月13日启动游戏化NFT交易市场Trove:5月28日消息,Arbitrum上NFT生态系统Treasure DAO宣布将于6月13日启动游戏化NFT交易市场Trove,并公布了Trove Launch合作伙伴的完整名单。另外,Trove会以ETH和MAGIC(Treasure DAO生态系统的原生代币)计价。[2022/5/28 3:46:46]
使用监督式机器学习时,输入被提供给已经用特定参数训练过的模型。然后该模型产生可被其他系统使用的输出。由于轻量级的机器学习框架和ONNX等格式,现在可以在边缘设备上运行这些推理,例如手机或物联网设备,而不是将输入数据发送到集中式服务器。这提高了用户的可扩展性和隐私性。
Gate.io行情:DAO 24小时涨幅达39.30%:据Gate.io芝麻开门行情显示,截至今日18:37,DAO 24小时最高涨幅达39.30%,当前涨幅29.97%,最高报价6.7001美元,当前报价6.3883美元。近期行情波动较大,请注意控制风险。[2021/3/19 19:01:18]
然而,需要注意的是,通常会将机器学习模型的输入和参数都保持私密并隐藏在公众视野之外。这是因为输入数据可能包含敏感信息,例如个人金融或生物识别数据,而模型参数也可能包含敏感信息,例如生物识别验证参数。
另一方面,使用ML模型的输出的下游系统,例如链上智能合约,需要能够验证输入是否正确处理以产生声称的输出。
分析 | 有安全隐患的MakerDAO旧治理合约还有140万美元资产待转移:据PeckShield态势感知平台数据显示,北京时间 05月07日 凌晨00:25 MakerDAO被曝治理合约中存在安全漏洞,截至到05月08日下午2:00,已经有128个用户按照建议转移MKR资产到他们的个人钱包,不过还有32个持有大于1MKR的用户还未转移。按照当天价格,待转移的余额资产价值大约140万美元。PeckShield安全人员进一步分析认为,质押在旧的MakerDAO治理合约中的MKR代币不安全,存在被锁死的可能,PeckShield目前全面布控可能的攻击监控预警,并和MakerDAO等相关公司随时同步进展详情。同时再次提醒,对尚未转移MKR代币的用户应立即转移资产,避免造成不必要的损失。[2019/5/8]
机器学习和zkSNARK协议的结合提供了一种新的解决方案,解决了这些看似矛盾的要求。
ZK-ML用例
有许多论文讨论了我们可以如何使用zk-SNARKs来改善我们未来的机器学习。ZK-ML社区提供了一个非常有用的决策树,让我们考虑这种技术的各种用例。
这个决策树基于两个标准的交集:需要隐私和计算完整性,以及使用机器学习解决的启发式优化问题。换句话说,决策树用于确定是否适合使用涉及ZKML的用例,在这些用例中,隐私和计算完整性很重要,并且使用机器学习技术解决启发式优化问题,
以下是zk如何用于ML模型创新的一些方式:
隐私保护机器学习
zk-SNARK可用于在不向模型的创建者或用户公开私有数据的情况下对机器学习模型进行训练。这允许开发可以在敏感或受监管的行业中使用的模型,而不会损害使用个人数据的个人隐私。
可验证机器学习
zk-SNARK可用于证明机器学习模型是在特定数据集上进行训练的,或者特定模型用于进行预测,而不会透露训练数据或模型的详细信息。这可以增加对机器学习模型结果的信任,这在信用评分或医学诊断等应用中非常重要。
安全机器学习
zk-SNARK可用于通过确保模型未被篡改或替换为不同的模型来保护机器学习模型的完整性。这在模型部署在不受信任的环境中的应用中非常有用。
ZKonduit可能的应用
像ZKonduit这样的项目正在将ZK-ML视为赋予区块链眼睛、让智能合约行使判断力、单人预言机以及通常以可扩展的方式在链上获取数据的关键。使用ZK-ML预言者提供了一种更简单、更快速、更高效的方式,将链下数据传输到区块链上,大大增加了将数据带到链上的潜力。ZK-ML可以使“智能法官”解释模糊事件。这可能为Web3带来不可想象的新用例,但以下仅是最近讨论过的一些用例:
ZKKYC
能够证明一个人的身份与相应的身份证匹配,并且该身份证号码不在制裁名单上。虽然这项技术是可用的,但监管机构可能不会接受它,因为它们目前要求银行“了解”其客户,而不仅仅是验证他们不在制裁名单上。这是监管机构的一个新领域,必须采取措施防止不受欢迎的参与者使用去中心化项目。
防欺诈检查
智能合约或抽象账户添加了一个ZK-ML欺诈垃圾邮件检查,用于检测异常行为。这意味着可以通过分析活动模式并将其与已知的欺诈或垃圾邮件活动模式进行比较,使用零知识机器学习技术来检测和防止欺诈或垃圾邮件行为。这可以通过检测和防止恶意活动来帮助确保系统的安全性和完整性。
使DAO自治
Zk-SNARKs技术允许以保护输入数据隐私的方式执行复杂计算,适用于需要保护敏感信息的情况。可以将机器学习算法集成到该技术中,以实现更先进的决策制定、评估和更高效、准确的通信系统。这些能力对未来的DAO内部动态可能至关重要。
结论
将零知识证明集成到人工智能系统中,可以为用户和使用这些系统的公司提供新的安全和隐私保护级别。通过使人工智能能够证明其决策的有效性,而不揭示底层数据或算法,零知识证明可以帮助缓解数据泄露和恶意攻击的风险。此外,它们还可以通过提供透明和可验证的方式来证明其公平性和准确性,从而有助于建立人工智能系统的信任。
随着人工智能领域的不断发展和扩大,零知识证明的应用将越来越重要,以确保这些强大技术的安全和负责任的部署。
据cryptovest报道,瑞士集装箱供应商SmartContainersGroup利用区块链技术推出智能集装箱,该集装箱将通过加密货币自行向客户出具发票.
1900/1/1 0:00:00美国洲际交易所旗下的数字资产交易市场Bakkt委托进行的一项研究表明,女性投资者正在快速进入Web3.0与加密货币领域,性别差距越来越小.
1900/1/1 0:00:00以太坊上海升级后,加密行业会发生什么新变化?今年三月,以太坊开发人员将开启以太坊测试网Goerli上海升级计划,在达成普遍共识后3-4周完成以太坊上海升级.
1900/1/1 0:00:00过去24小时,市场出现了不少新的热门币种和话题,或许它们就是下一个市场焦点。1.热门项目IC:狐狸图片的MemeCoin,链上流动性$57万,24小时交易量$461万,市值$400万,活跃度较高.
1900/1/1 0:00:00去中心化世界刚刚经历了一波历史级别的牛市,无数创新呈现在我们的面前。相较于2018年牛熊转换后的一地鸡毛,这次去中心化世界拥有了DeFi、NFT、衍生品、Lanuchpad、Incubator等.
1900/1/1 0:00:00一、行业动态总结 上周加密市场表现出了极强的韧性与弹性,周一至周三在美股上涨的阶段比特币上涨12%,周五开始跟随美股回调,但国内时间周六顶住了美股继续回调的压力完成反弹,并在周末继续小幅上涨.
1900/1/1 0:00:00