De-AI(去中心化人工智能)会成为像Elon Musk所预言的那样统治我们生活的人工智能机器人独裁者,还是会成为丰富且不那么物质化的未来的生产工具?由加密货币的间歇性牛市及其各自的区块链推动的去中心化点对点技术的改进,正在产生可以改善去中心化人工智能(De-AI)的生产环境。
De-AI 的问题就和区块链一样,一个单一的系统将面临突然停用该计算机系统的非常艰巨的风险,因为节点将分布在许多国家/地区,并且系统中内置了经济激励措施。参与 De-AI 网络的已部署节点将获得加密货币奖励。与当前许多的 AI 应用程序一样,De-AI 上将提供 AI 应用程序,但它们不会由单个人类实体控制,而是由受经济激励措施引导的验证者社区控制。
小红书R-SPACE上线可支持社区展示的“数字头像动效功能”:11月10日消息,小红书R-SPACE数字空间推出可支持在社区内展示的“数字头像”动效新功能。用户可以选择突显“最能代表自己”的数字头像图片,并将其设置为小红书账户的头像来彰显个性。继AR互动能力上线后,此次头像新功能上线是小红书R-SPACE面向社区用户开放的又一全新原生场景,该场景为用户/持有者参与社区共建和成长奠定了基础,并创建了独特的机会让用户和社区以及其他持有者社群进行互动,提供了更Web3的场景体验。
目前头像动效功能已经在夏嘉欢 GreenFriends、精灵女孩等国内头像系列持有者中测试开发。据悉小红书的数字头像动效设计方案采用了全新大胆的设计叠加视觉动效,不再是传统的“六边形”设计。伴随R-SPACE不断发展,基于用户身份的数字徽章等功能也会逐步增加和开放。[2022/11/10 12:43:20]
Layer 2区块链被设计为可大规模扩展,是部署机器学习算法的自然目标,但可能需要一种更原生的方法,包括高速计算。Layer 2区块链,如 Optimism、Arbitrum 和 Starkware,有特定的编程语言(最常见的是 Solidity,Cairo 即将出现在StarkWare)不适合人工智能的高性能计算。
比特币矿企CleanSpark将全部算力转移至FoundryDigital的北美矿池:9月27日消息,比特币矿企CleanSpark宣布将公司旗下超1EH/s的比特币算力全部转移至FoundryDigital的北美矿池,并计划继续部署矿机,从而实现算力在2021年底达到2EH/s以到2022年秋季达到3.2EH/s的目标。[2021/9/27 17:10:22]
零知识 (ZK) 是加密生成的简短证明,证明有一些数据或计算已经完成,而没有透露数据或计算的所有细节。有用的 ZK 证明还必须在短时间内可验证。未来零知识技术的高速改进(StarkWare 使用了这种ZK技术)将允许对区块链进行高性能计算。
以太坊2.0新测试网Spadina已上线:spadina.beaconcha.in网站显示,以太坊2.0新测试网Spadina已经启动。
据此前报道,9月14日,以太坊2.0协调员Danny Ryan发文称,将在以太坊2.0主网上线前再进行一次公开测试,即推出新测试网Spadina,Spadina具有3天寿命,将在本月晚些时候与Medalla并行运行。[2020/9/29]
区块链的主要问题是用户需要任何交易计算都可以由其他节点快速验证,而 ZK 允许验证比计算本身快得多。
我们可以考虑哪些机器学习系统最适合首先迁移到去中心化系统中,这包括:
**1)推荐系统:**当用户消费不同的项目时,它被注册并被评估以建议未来要消费的项目。从技术上讲,你需要估计到其他项目的距离。这种类型的技术非常适合将推荐算法数据应用到多个节点中。你不需要将所有用户偏好、过去消费的项目都存储在一台计算机上。
Mati Greenspan:以太坊交易费用飙涨显示基本面看涨:Quantum Economics创始人Mati Greenspan发推称,以太坊交易费用距离历史最高点不足3美分。每天的交易数量也在上升,所以显然人们很乐意为这项服务付费。总的来说,我认为这些是看涨的基本面,因为网络现在保留了更多的价值。[2020/8/13]
**2)聚类/非结构化分类:**鉴于聚类是将数据集分类为自发的新类别的问题,似乎比结构化分类(固定数量的类别)更容易去中心化。如果你将类别想象为地理区域,你会发现没有必要将所有数据点都存储在一台计算机中。特别是广义聚类算法中的应用于大脑图像的去中心化聚类算法。
现在人工智能或机器学习中缺少的工具是结构化分类器。基于固定数量的类别,算法必须猜测一条数据属于哪个类别(例如,这篇文章是用英语还是中文写的?)。与强化学习密切相关,强化学习就像分类器的闭环,为机器人或游戏生成动作。
动态 | 投资公司SparkLabs将推出网络安全和区块链加速计划:据Techcrunch消息,投资公司SparkLabs已经在亚太地区开展了加速器项目,现在它已经宣布了第一个基于美国土地的加速器计划,它将是一个网络安全和区块链计划,将于明年在华盛顿特区开展。[2018/9/20]
深度学习是多层结构化分类器(因此,深度分层)的组合,以获得更复杂的自动化学习体验。这种类型的 AI 工具的问题在于,你需要所有训练数据集的全局视图,因为输出使用的是经过训练的权重或变量形式的数据合成汇总。你需要训练权重来生成输出、类别、机器人动作。
矩阵乘法是做大量的数值乘法和加法。海量矩阵乘法是结构化分类器、深度学习和强化学习中涉及的主要操作。正如我们之前提到的,对这些操作的验证(以避免作弊)是 De-AI 将面临的主要挑战。我们为去中心化人工智能 (De-AI) 设想了这三种场景:
**1)原生高性能区块链或侧链:**当比特币被认为是无用的,因为“浪费”了每秒验证 5 笔交易的无意识计算量,许多有远见的人提出,区块的挖掘涉及更多有用的计算。这是区块链难题的圣杯,将帮助人类。
要参与区块链网络中交易的验证,你将必须进行矩阵乘法和复杂的机器学习操作,这些操作将由其他节点验证,并最终被接受为挖矿的一部分加密货币。这种方法仅限于特定操作或静态深度学习架构。Filecoin 和其他存储区块链可以通过仅存储数据但没有太多或没有转换的方式在此类别中看到。WekaCoin解决方案提出了一系列多样化的机器学习算法参与共识,使挖矿更加智能。
**2)更快的 Layer2 区块链:**利用现有的高性能和廉价的Layer 2区块链,其中大多数基于以太坊网络协议,是实现去中心化人工智能的自然方法。使用 Solidity 作为编程语言可能不是最快的,但该技术具有构建去中心化 AI 乐高的所有要素。
构建可重复用的机器学习代码块,这些代码是开放且免费的(如果你支付网络费用)。这种方法的主要限制是区块链通常具有有限的计算能力,可以包含在单个区块中。然后,如果你分叉像 Arbitrum、Optimism 或 Starkware 这样的Layer 2,你必须准备好大量增加最大区块大小,并准备好为网络中的验证器设置最低性能阈值。
**3)用于 AI 的专用零知识平台:**这种替代方案类似于前面提到的 StarkWare Layer 2方法,但也涉及针对矩阵乘法和深度学习的 ZK 智能合约(例如使用Cairo编程语言)的特定开发。这可以在智能合约层中完成,例如在 StarkWare 中,或者在较低的共识层中完成。目标是进行大量繁重的计算,可以很容易地被网络中的其他节点验证。此外,包括灵活的智能合约操作组合允许不同算法的互操作性。
*此处表达的观点和意见作者的观点和意见,不一定反映SparkDAO的观点。每一项投资和交易都涉及风险,在做出决策時,你应该有自己的判断!
来源:bress
Bress
个人专栏
阅读更多
金色早8点
金色财经
去中心化金融社区
CertiK中文社区
虎嗅科技
区块律动BlockBeats
念青
深潮TechFlow
Odaily星球日报
腾讯研究院
作者:LORENZO一个网络中的计算机依据协议跟彼此交流。在这里,“协议” 指的是一套规则系统,指定了消息应该如何传输和解读.
1900/1/1 0:00:00来源:深潮 TechFlow想到日本,你首先想到什么?樱花、动漫、富士山、任天堂……?当日本与 Crypto 联系在一起,大部分加密从业者却鲜有认知,尽管从2017年开始.
1900/1/1 0:00:00原文作者:0x Fishy 原文编译:Kxp,BlockBeatsMEV 是区块链设计的副产品,是 DeFi 的独有产物.
1900/1/1 0:00:00文:Seun Gbri来源:Global Coin Research已故的斯蒂芬·柯维(Stephen Covey)曾说,生活中有三个常量:变化、选择和原则。我们正在增加第四个:税收.
1900/1/1 0:00:00来源:NGC Ventures编译:王尔玉,PANews自DeFi盛夏带来2020年的牛市以来,所有人都预料到机构即将采用DeFi.
1900/1/1 0:00:00作者:Nancy相比GBTC的赎回有来自SEC的监管不确定性,stETH的赎回只是时间的问题,但短期的流动性或面临压力.
1900/1/1 0:00:00