来源:新智元编辑:Aeneas好困
快速定制模型的LLM引擎Lamini来了,开发者狂喜!
ChatGPT虽好,但始终有门槛。通常,只有拥有AI博士学位的大型机器学习团队,才能这样训练一个模型。
为了把这个门槛打下来,团队构建了Lamini引擎,从此,每个开发者都能够拥有从GPT-3训练ChatGPT的超能力!
划重点:可以商用!可以商用!可以商用!
项目地址:https://github.com/lamini-ai/lamini/
Lamini的开发团队表示,你需要的只是几行代码,就可以用托管数据生成器俩训练自己的LLM,包括权重和其他所有的内容。
此外,你也可以使用开源的LLM,用Lamini库对生成的数据进行微调。以及访问完整的LLM训练模块,使用从LoRa等速度优化,到虚拟私有云(VPC)部署等企业功能。
对此,英伟达科学家JimFan表示,LLaMa+自定义数据正在成为新的范式,而Lamini的推出也带了一种全新的模式——FaaS,微调即服务。
Circle 在 Arbitrum 上线跨链传输协议 CCTP:6月27日消息,Circle 宣布在 Arbitrum 上线跨链传输协议(CCTP)。CCTP 使 USDC 能够跨链转移,会在用户跨链时销毁源链上的代币并在目标链上铸造新的代币,目前已上线以太坊、Avalanche 和 Arbitrum。此前,Circle 已于 6 月 8 日在 Arbitrum 上推出原生 USDC。
Celer Network、Interport Finance、LI.FI、Router Protocol、O3 Labs、Wanchain、Wormhole 等已支持 CCTP。另外,Multichain 表示,MultiCircle 将使用 CCTP 和 MPC 技术探索 RWA 代币化。[2023/6/27 22:03:41]
MLOps的未来是「LMOps」。哪里有标准化,哪里就有机会。
OpenAI科学家,前特斯拉人工智能总监AndrejKarpathy也表示,LLM定制化的生态正在愈发火爆。
训LLM就像prompt-tuning一样简单
写一个prompt如此容易,但想要从基础模型训练出一个大语言模型,却是如此困难。
因为需要花费大量时间,来找出微调模型失败的原因,所以对数据集微调的迭代周期都是以月为单位的。
与之相反,微调prompt的迭代,只需要几秒钟,并且在几个小时内,性能都能保持稳定。
这个过程只需要把有限数量的数据整合到prompt中就可以了,并不需要动辄几TB的数据。
Coinbase:部分用户ETH 2显示页面出现短暂故障,问题现已解决:金色财经报道,据Coinbase Assets在社交媒体披露,部分用户ETH 2、账户余额、质押/解质押/兑换封装代币cbETH的显示页面出现短暂显示故障,在经过处理后目前问题已经得到解决,Coinbase表示用户资金是安全的。[2023/4/25 14:25:49]
ChatGPT的诞生十分艰难,OpenAI的团队花了几个月的时间,在基础的GPT-3模型上微调,并进行RLHF。这个门槛极高,只有大型的ML团队才能完成这种训练。
有500强企业的技术负责人这样抱怨过:「我们团队的10名机器学习工程师用了OpenAI的微调API,结果我们的模型反而变得更差了,怎么办啊。」
「我真的不知道该怎么充分利用数据,我已经用尽了所有从在线教程中能学到的prompt魔法了。」
这,就是研究者构建Lamini的原因:让每个开发者可以直接从GPT-3训练ChatGPT。
任意LLM,秒变ChatGPT!
Lamini是一个LLM引擎,可以让不仅仅是机器学习专家的任何开发人员,都能在大型数据集中,把高性能的LLM训练得像ChatGPT一样好。
这个过程,只需要Laimini库的几行代码即可。
值得注意的是,这个库中的优化远远超出了现在开发者可以使用的范围,从更具挑战性的优化到更简单的优化。
比如,你想从不同的角度生成一个广告文案。
首先,从llama模块导入LLM引擎:
国际货币基金组织:不授予加密货币官方货币或法定货币的地位:金色财经报道,国际货币基金组织:不授予加密货币官方货币或法定货币的地位。[2023/2/24 12:26:03]
fromllamaimportLLMllm=LLM(name="marketing")
接下来,需要定义输入和输出类型。注意,这里一定要包括上下文,因为可以有助于LLM在自然语言中进行理解。
fromllamaimportType,ContextclassAdAspects(Type):tone:str=Context("toneofthemarketingcopy")product_features:list=Context("productfeaturestopromote")audience:str=Context("targetaudienceforthemessage")subject:str=Context("subjectortopicofthemessage")goal:str=Context("goalofthismarketingcampaignandmessage")classAdCopy(Type):title:str=Context("googleadtitletag")description:str=Context("googleaddescription")keywords:list=Context("keywordsforthesearchengine")
然后就可以开始提问了:
语气:大胆,但不傲慢
特色:亚洲酱料和香料、家常调料和套餐包,可以轻松在家烹饪。
aspects=AdAspects(tone="boldandbright,butnotarrogant",product_features=,audience="suburbanfamilies",subject="deliciousasianmealswithoutgoingtoarestaurant",goal="getsuburbanmomsanddadstotrybuytheirfirstomsompackorfreetastingkit")ad_copy=llm(input=aspects,output_type=AdCopy)print(f"Adcopy:{ad_copy}")模型输出:
FTX将上线Synapse(SYN)现货市场:据官方消息,FTX将于09月30日14:00(UTC)上线Synapse(SYN)现货市场,开放SYN/USD交易对。SYN充提开放时间为9月30日02:00(UTC)。
Synapse是个跨链信息传递协议。SYN通证原生建立于以太坊,是Synapse协议的原动力,用于激励流动性和智能合约升级治理决策。Synapse桥使用Synapse协议构建,支持Ethereum及多条区块链。[2022/9/29 6:02:29]
尝试Omsom的美味亚洲酱料、香料、家常调料和套餐包。轻松为家人在家做出美味佳肴。
>title='DeliciousAsianMealsWithoutGoingtoaRestaurant|Omsom'description="TryOmsom'sdeliciousAsiansauces,aromatics,andhome-cookedseasoningsandmealpacks.Easilycookdeliciousmealsathomeforyourfamily."keywords=
如何创建自己的「ChatGPT」
基础模型能理解一般的英语,但如果需要它们学习一些垂直语言和规则,prompt微调并不足够,很多时候我们都需要构建自己的LLM。
利用用下面这个步骤,就能获得像ChatGPT一样遵循指令的LLM。
尝试prompt-tuningChatGPT或其他模型
可以使用Lamini库的API,在不同模型之间快速进行prompt-tuning,只需一行代码,即可在OpenAI和开源模型之间切换。
花旗:将Coinbase目标价从6美元上调至7美元:8月5日消息,花旗:将加密货币交易所Coinbase目标价从6美元上调至7美元。[2022/8/5 12:04:47]
Lamini库已经优化了正确的prompt,这样开发者就可以使用不同的模型,不必担心如何为每个模型设置prompt的格式。
构建一个包含输入-输出对的大型数据集
这些数据集会向模型展示,它应该如何响应输入,无论是遵循英文说明,还是以JSON响应。
研究者刚刚发布了一个只有几行代码的repo,使用Lamini库,仅从100个数据点中,就能生成50k数据点。
而且因为使用Lamini库来启动Lamini引擎,所以这个过程根本不需要用到GPU。
在repo中,已经包含一个开源的70+k数据集。
项目地址:https://github.com/lamini-ai/lamini/
在大型数据集上微调基础模型
除了数据生成器,研究者还发布了一个LLM,它使用Lamini对生成的数据进行了微调。以编程方式执行此操作的功能也会很快发布。
也可以把OpenAI的微调API作为起步。
在微调模型上进行RLHF
使用Lamini,就不再需要大型ML和人工标记团队来运行RLHF。
部署到云端
只需点击产品或功能中的API端点即可。
专为LLM打造的数据生成器
简单来说,依照以下几个步骤,就可以训练自己的大语言模型了。
用于优化prompt微调和类型化输出的Lamini库。
用于微调和RLHF的高级Lamini库,只需几行代码。
史上首个托管数据生成器,用于创建数据,来训练遵循指令的LLM。注意,已获得商业使用许可!
开源的指令跟随LLM,使用上述工具,只需几行代码即可完成。
数据生成器工作原理
Lamini数据生成器是一个LLM管线,它采用原始的100多条指令的小集合,与预期的响应配对,生成50k+新的配对,灵感来自Stanford的Alpaca。这个生成管线使用Lamini库来定义和调用LLM,以生成不同但相似的指令和响应对。
根据这些数据训练后,你的LLM会遵循这些指示,因而得到改进。对于使用开源LLM的生成管线,研究者提供了一个很好的默认值,LaminiOpen和LaminiInstruct。
随着每天新的LLM发布,研究者都会将默认值更新为性能最佳的模型。在目前的版本中,LaminiOpen用的是EleutherAI的Pythia,LaminiInstruct用的是Databricks的Dolly。
LaminiOpen会生成更多指令,而LaminiInstruct会生成这些指令的成对响应。
最终生成的数据集可供免费商业使用,已经通过CC-BY许可。
仅用一行代码,就可以将Lamini库的默认值换成其他开源或OpenAI模型。
研究者发现,OpenAI模型的平均表现更好,但它们的许可限制了将生成数据用于训练类ChatGPT模型的商用。
对生成数据进行微调
在这个过程中,生成的数据会质量不一。
在微调之前,下一步就是将生成的数据过滤为高质量数据。
然后,Lamini会通过在这个过滤后生成的数据集上训练基础模型,来创建自定义LLM。
研究者已经发布了一个开源指令跟随LLM,可以用Lamini来训练Pythia基础模型,生成的37k指令是从70k中筛选出来的。
显然,Lamini库的出现,让迭代周期变得更快、更有效,有更多的人能够构建模型,而不仅仅是试验各种prompt。
团队介绍
SharonZhou是Lamini的联合创始人兼首席执行官。
个人主页:https://sharonzhou.me/
她在哈佛大学获得了计算机科学与古典文学联合学士学位,并以最高荣誉获得了硕士学位。
随后,她在斯坦福大学获得了计算机科学博士学位,师从吴恩达。
2022年,29岁的Zhou入选《麻省理工科技评论》「35岁以下科技创新35人」。
GregoryDiamos是MLPerf的联合创始人。
他曾是百度硅谷AI实验室的创始成员,对DeepSpeech和DeepVoice系统有贡献。
参考资料:
https://lamini.ai/blog/introducing-lamini
标签:MINMINIPROROMGemini染染复合gemini求婚什么时候Pandora Protocolprom币最新消息
原文:《OnAirdrops》byJoelJohn、Saurabh编译:aididiaojp.eth,ForesightNews这是一个关于喧嚣、嫉妒和坚持的故事.
1900/1/1 0:00:00作者:MatthewMastando?Forbes预言机是负责将现实世界数据连接到链上合约的一行行代码,它就像是连通区块链世界与链下数据的桥梁.
1900/1/1 0:00:00作者:0xsurferboy编辑:Biteye核心贡献者Crush涉及ZK-EVM、DEX工具包、RaaS、订单薄DEX、全链稳定币等5个赛道.
1900/1/1 0:00:00划重点①曾鸣:如果AR、VR眼镜需要两三年的时间去酝酿,我觉得三年左右会迎来Web3的第一次大爆炸.
1900/1/1 0:00:00文/?KermanKohli,DeFiWeekly创始人;译/金色财经xiaozou上周,我写了一篇关于不同加密业务的终生价值的文章: 那篇文章很受欢迎,所以我想我应该再写一篇文章.
1900/1/1 0:00:00DeFi数据1、DeFi代币总市值:497.62亿美元 DeFi总市值及前十代币数据来源:coingecko2、过去24小时去中心化交易所的交易量13.
1900/1/1 0:00:00