作者:胡璇腾讯研究院高级研究员;胡晓萌腾讯研究院研究员、博士后
内容生产,特别是创意工作,一向被认为是人类的专属和智能的体现。牛津大学计算机学院院长迈克尔·伍尔德里奇2019年写作的《人工智能全传》一书中,“撰写有趣的故事”被列为人工智能“远未实现”的任务之一。
如今,AI正大步迈入数字内容生产领域。AIGC不仅在写作、绘画、作曲多项领域达到“类人”表现,更展示出在大数据学习基础上的非凡创意潜能。2023年3月15日,多模态信息处理标杆GPT-4模型正式发布,使生成内容的准确度及合规性进一步提升。数字内容生产的人机协作新范式正在形成,创作者和更多普通人得以跨越“技法”和“效能”限制,尽情挥洒内容创意。
也有人担忧,AI是否会让创作者们集体“失业”,甚至让“创作”本身走向衰颓,就像机械复制时代的艺术品可能失去“灵韵”那样。换言之,AIGC的流行给了我们一个重新审视“创作”是什么、是否为人所独有这些问题的机会。
本文将分析AIGC改变数字内容创作的现状、关键突破和挑战,并尝试探讨以上问题。
AIGC正在成为互联网内容生产基础设施
数字内容正迈入强需求、视频化、拼创意的升级周期,AIGC恰逢其会。线上生活成为常态,一方面,用户创作内容大幅解放生产力,例如短视频就是将原本需要长制作周期、高注意投入的视频,变成了可以源源不断产出的“工业品”和“快消品”;另一方面,作为核心的创意仍旧稀缺,需要新的模式辅助创作者持续产生、迭代和验证创意。种种因素,都需要更加低成本、高效能的新工具与方式。
AIGC正在越来越多地参与数字内容的创意性生成工作,以人机协同的方式释放价值,成为未来互联网的内容生产基础设施。
从范围上看,AIGC逐步深度融入到文字、代码、音乐、图片、视频、3D多种媒介形态的生产中,可以担任新闻、论文、小说写手,音乐作曲和编曲者,多样化风格的画手,长短视频的剪辑者和后期处理工程师,3D建模师等多样化的助手角色,在人类的指导下完成指定主题内容的创作、编辑和风格迁移工作。
数据:2022年以太坊占据所有区块空间费用的80%,BNB Chain占据剩余的80%:1月3日消息,加密研究员Data_Always发布文章表示,2022年以太坊占据所有区块空间费用的80%,BNB Chain占据了剩余费用的80%,而最大的简单传输模型(Bitcoin、Dogecoin和Litecoin)相比之下仅占微不足道的费用。在Otherdeed NFT铸造的一天里,以太坊上产生的费用就超过了2022年比特币全年费用。
L2使用的Gas份额增加了两倍,但采用率仍不高,但随着EIP-4844的推出可能会改善。对于以太坊而言,必须继续扩展并优先考虑协议的可用性,尽管费用将始终是KPI,但扩展速度比采用速度快是新的目标,这将是推高价格和巩固以太坊在加密生态系统的关键。
尽管采取补贴交易模式,Tron在区块空间需求上仍超过了比特币,并且全年费用保持相对稳定,最重要原因是Tron对低价值USDT转账的捕获。比特币闪电网络尚未看到有意义的增长,对闪电网络采用预期过于乐观,大部分交易费用峰值可归因于加密机构的崩溃。[2023/1/3 22:22:25]
从效果上看,AIGC在基于自然语言的文本、语音和图片生成领域初步令人满意,特别是知识类中短文,插画等高度风格化的图片创作,创作效果可以与有中级经验的创作者相匹敌;在视频和3D等媒介复杂度高的领域处于探索阶段。尽管AIGC对极端案例的处理、细节把控、成品准确率等方面仍有许多进步空间,但蕴含的潜力令人期待。
从方式上看,AIGC的跨文字、图像、视频和3D的多模态加工是热点。吴恩达认为多模态是2021年AI的最重要趋势,AI模型在发现文本与图像间关系中取得了显著进步,如OPENAI的CLIP能匹配图像和文本,Dall·E生成与输入文本对应的图像;DeepMind的PerceiverIO可以对文本、图像、视频和点云进行分类。典型应用包括如文本转换语音TTS、文本生成图片,广义来看AI翻译、图片风格化也可以看作是两个不同“模态“间的映射。
OffChain Labs联创: zkEVM远未成熟,任何推动这种叙事的团队都在损害社区:10月17日消息,Arbitru m开发公司OffChain Labs联创Steven Goldfeder在其社交平台表示,目前有团队声称首个zkEVM将于本月底上线主网,但其对此持否定态度,并称任何推动这种叙事的团队都在损害社区。
Goldfeder表示,当前推出的zkEVM测试网并没有启用zk-proofs,也没有经过安全审计,这表明我们还没有为黄金时段做好准备。[2022/10/17 17:29:00]
上图:原图,AIGC的典型场景及发展趋势,来自红杉资本
下图:使用有道智云AI翻译后的结果
关键突破:自然语言技术解放创作力
AIGC对创作者的解放体现在:“只要会说话,你就能创作”,无需懂得原理,不用学习代码,或者Photoshop等专业工具。创作者以自然语言向AI描述脑海中的要素甚至想法后,AI就能生成对应的结果。这也是人机互动从打孔纸带,到编程语言,图形界面后的又一次飞跃。
自然语言是不同数字内容类型间转化的根信息和纽带,比如“猫”这个词语就是加菲猫的图片,音乐剧《猫》和无数内容的索引,这些不同的内容类型可以称为“多模态”。
学术研究机构IC3获Chainlink第二笔社区赠款:金色财经消息,Chainlink宣布学术研究机构 The Initiative for Cryptocurrencies and Contracts(IC3)获得第二笔 Chainlink 研究资助。赠款将支持IC3继续研究用于存储和处理高价值加密货币和机密交易的高性能系统的新方法,以改善 Chainlink 基础设施和更广泛的智能合约生态系统。
IC3 是一项基于 Jacobs Technion-Cornell 研究所的智能合约技术合作研究计划,由来自卡内基梅隆大学、康奈尔大学、康奈尔理工大学等的教职员工组成,除了 Chainlink,IC3 还得到了以太坊基金会、富达应用技术中心、IBM、英特尔、JP Morgan、Novi 和 Protocol Labs 的支持。[2022/4/16 14:27:48]
AIGC此轮浪潮,最大底层进化就在AI对自然语言“理解”和“运用”能力的飞跃,这离不开2017年Google发布的Transformer,它开启了大型语言模型时代。有了这一强大的特征提取器,后续的GPT、BERT等语言模型突飞猛进,不仅质量高、效率高,还能以大数据预训练+小数据微调的方式,摆脱了对大量人工调参的依赖,在手写、语音和图像识别、语言理解方面的表现大幅突破,所生成的内容也越来越准确和自然。
但大模型意味着极高的研究和使用门槛,例如GPT-3有1750亿参数量,既需要大算力集群也不向一般用户开放。2022年,部署在Discord论坛上、以聊天机器人形式提供的midjourney成为了第一个用户友好型AIGC应用,带来AI绘画热潮,一位设计师用其生成的图片甚至在线下比赛中获奖。
Gate.io 将开通FIC充提服务及已开通BCHA充提服务:据官方公告,Gate.io将全面开通FIC(Filecash)主网币充值和提现服务(目前交易服务已开放);现已开通BCHA(BCHABC)充值和提现服务。风险提示:开通FIC充值服务以后,外部资金可能流入平台,造成FIC流通量上升,请务必注意价格变化,提前调整市场挂单,切勿追高。[2020/11/19 21:21:08]
使用简单文字即可交流的低门槛,类似搜索引擎的使用方式,一下子点燃了普通用户对AI使用的热情。紧接着,基于扩散模型的一系列文本生成图片产品,如StableDiffusion等,把AI绘画从设计圈带向大众。开源的StableDiffusion仅需一台电脑就能运行,截至2022年10月已有超过20万开发者下载,累计日活用户超过1000万;而面向消费者的DreamStudio则已获得了超过150万用户,生成超过1.7亿图片。其惊艳的艺术风格、以及图像涉及的版权、法律等问题也引发了诸多争议。
Diffusion的震撼感还没消散,ChatGPT横空出世,真正做到和人类“对答如流”,能理解各式各样的需求,写出回答、短文和诗歌创作、代码写作、数学和逻辑计算等。不仅如此,人类反馈强化学习(RLHF)技术让ChatGPT能持续学习人类对回答的建议和评价,朝更加正确的方向前进,因此以不到GPT3的1%的参数实现了极佳的效果。尽管ChatGPT仍存在一些缺陷,例如引用不存在的论文和书籍、对缺乏数据的问题回答质量不佳等,但它仍然是人工智能史上的里程碑,并上线两个月后用户数突破1亿,成为史上用户数增长最快的消费者应用。
下一挑战:向“在场”的3D互联网进发
在文、图、视频后,数字技术演进的重要方向是从“在线”走向“在场”,AIGC将成为打造3D互联网的基石。人们将在在虚拟空间构建仿真世界,在现实世界“叠加“虚拟增强,实现真正的临场感。随着XR、游戏引擎、云游戏等等各种交互、仿真、传输技术的突破,信息传输越来越接近无损,数字仿真能力真假难辨,人类的交互和体验将到达新阶段。
ChainUP与小蜜蜂交易平台达成深度合作:据官方消息,近日ChainUP与小蜜蜂交易平台达成技术与安全方面的深度合作,ChainUP将提供技术咨询、7*24小时运维、风控监测等服务,为小蜜蜂平台提供技术与安全双重保障,并于今日正式上线。
小蜜蜂总部位于新加坡,是完善生态闭环的数字资产交易综合服务平台,坚守“用户利益第一”原则。小蜜蜂平台旨在推动区块链技术真正全面地落地应用,向专业机构投资者和高净值客户提供交易、清算、ETF、杠杆、OTC、资产管理等一站式综合数字货币金融服务。
ChainUP区块链技术服务商,目前已为全球500多家客户提供了区块链技术服务,覆盖美国、英国、加拿大、澳大利亚、日本、新加坡、马来西亚、泰国等30多个国家和地区。[2020/9/26]
目前AIGC在3D模型领域还处于探索阶段,一条路径是以扩散模型为基础分两步走:先由文字生成图片,再生成包含深度的三维数据。谷歌和英伟达在这一领域较为领先,先后发布了自己的文字生成3D的AI模型。但从生成效果看,距离现在人工制作的3D内容的平均质量还有距离;生成速度也未能尽如人意。
2022年10月,谷歌率先发布了DreamFusion,但其缺点也很显著,首先扩散模型仅对64x64的图像生效,导致生成3D的质量不高;其次场景渲染模型不仅需要海量样本,也在计算上费时费力,导致生成速度较慢。随后,英伟达发布了Magic3D,面对提示语“一只坐在睡莲上的蓝色镖蛙”,用大约40分钟生成了一个带有纹理的3D模型。相比谷歌,Magic3D生成速度更快、效果更好,还能在连续生成过程中保留相同的主题,或者将风格迁移到3D模型中。
Magic3D与DreamFusion对比
第二条路径是借助AI来“合成”不同视角下同一物品的照片,从而直接生成3D。英伟达在2022年12月的NeurIPS上展示了生成式AI模型——GET3D,可根据其所训练的建筑物、汽车、动物等2D图像类别,即时合成3D模型。和上文中的输出物相比,模型和纹理更精细,更采取了一般3D工具的通用格式,能直接用到构建游戏、机器人、建筑、社交媒体等行业设计的数字空间,比如建筑物、户外空间或整座城市的3D表达。GET3D在英伟达A100GPU上训练而成,使用了不同角度拍摄的约100万张照片,每秒可生成约20个物体。结合团队的另一项技术,AI生成的模型能够区分出物体的几何形状、光照信息和材质信息,使可编辑性大幅加强。
NVIDIAGET3D基于AI生成的模型示例
可行路径:与游戏中的程序化生成技术相结合
尽管如此,AIGC在3D侧的能力,距离打造3D互联网仍有不小的距离。而游戏中较为成熟的程序化内容生成技术,可能是AIGC迈过深水区的一大助力。
从技术路径上,AI生成3D难以沿用“大力出奇迹”的老办法,即单靠喂给AI海量的输入来提升效果。首先,信息量不同,一张图片和一个3D模型相比相差一个维度,体现在存储上就是数据量级不同;其次,图片和3D的存储及显示原理不同,如果说2D是像素点阵在显示器的客观陈列,3D则是实时、快速、海量的矩阵运算,就像对着模型在1秒内进行几十次“拍照”。为了准确计算得到每个像素点,“渲染”在显示器上,需要考虑的因素至少有模型几何特征,通常用几千上万个三角面来表示材质特征,模型本身的颜色,是强反射的金属,还是漫反射的布料光线,光源是点状的吗,颜色和强度如何。最后,原生3D模型的数据相对较少,仅游戏、影视、数字孪生等领域有少量积累,远不如已存在了数千年、可以以非数字化形态存在的图像那么多,例如ImageNet中就包含了超过1400万张图片。
用计算机帮助创作者这件事,游戏界已经探索了四十多年。用算法生成的游戏内容首次出现在1981年的游戏Rogue中,地图随机,每局不同。3D时代,程序化生成技术大量应用于美术制作,因为其需要巨额时间和人力成本,以2018年发售的游戏《荒野大镖客2》为例,先后有六百余名美术参与,历经8年才完成约60平方公里的虚拟场景。
程序化生成在效能和可控度上介于纯手工和AIGC之间。例如2016年发布、主打宇宙探险的独立游戏《无人深空》,用PCG构造了一系列生成规则和参数,声称能创造出1840亿亿颗不同的星球,每个星球都有形态各异的环境和生物。
游戏《无人深空》中使用程序化生成的海洋生物示例
2022年的Epic打造的交互内容《黑客帝国:觉醒》在最新虚幻引擎和程序化生成加持下,打造出栩栩如生、高度复杂的未来城市,共包括700万个美术资产,包括7000栋建筑、38000辆可驾驶的车和超过260公里的道路,其中每个资产由数百万个多边形组成。
Epic使用虚幻5引擎和程序化生成技术高效制作《黑客帝国:觉醒》中的庞大城市
程序化生成和AI的结合更成为热门学术领域,每年人工智能与游戏的顶级学会——IEEETransactionsonGames都会为程序化生成开辟专门的讨论板块。剧情、关卡、场景、角色,每个板块都有大量的研究和实践成果在推进。
创作到底是什么?
关于创作,有一句经典论断——天才是99%的汗水,加上1%的灵感。爱迪生认为那1%的灵感最重要。AIGC则向我们证明,99%的汗水能产生质变。善用AI的创作者,或许才是“完全体”。
首先,AI和自然人的创作过程,没有那么大的差异:一部作品的诞生,一个作者的成长,都建立在大量对经典的观察、参照、模仿、提炼基础上,并非一蹴而就。而创新往往也有迹可循,或者是对主流的扬弃甚至反叛,或者是对多种元素的加成和融合。因此,如知识产权制度,也是在鼓励创作的基础上,给予贡献者以对等的奖励,而非一刀切地拒绝模仿。
其次,人作为创作核心这一点没有变化:AI面向任务,人类面向创造。一方面,人类信息系统纷繁复杂,远非几个“prompt”输入就能概括。正如一位网友说,AI代替不了我,因为它理解不了老板的需求。没有五年经验的乙方,也解读不来甲方口中的“要大气”。另一方面,AI成长的养料仍然由人提供,AI更可靠可信也依赖着人的使用与反馈。“断奶”于2021年的ChatGPT可不知道2022年世界杯的战果。
从实用的视角,AIGC将赋予普通用户更多的创作权力和自由。从PGC、UGC到AIGC的发展路径可见,普通人越来越多的参与到创作之中,数字内容不仅呈现数量上的指数级增长,类型和风格也走向了更加包容和多元的生态。未来,用户可以使用手机拍摄的一系列照片,通过AIGC工具生成一个可以使用的3D渲染图。采用这种创造内容的方式,我们可以想象未来的数字空间将不再完全由开发人员构建,而是利用AIGC响应用户的输入按需生成。
AIGC工具对专业人士的杠杆效应更显著:如果对普通人的增益是从0到1,对专业人士则可能是从1到10,使他们能集中精力处理更顶层、更有价值的事情:比如立意,风格,构图,元素组合和后处理,或者怎样在前期制作尽可能多样的demo来找寻更好的方案。运用AI也正成为新的职业能力,善于“施咒”的大触们前赴后继地开发着AI近乎无限的潜能,并社交平台上留下让人望洋兴叹的作品。
更长期看,创作和艺术的历史是螺旋上升的历史,是某一种风格数量极大丰富、质量巅峰造极之后的突破、突变与跨界,也是一个时代精神情感的凝结。我们有理由相信,AIGC变革下创新依旧存在,甚至会加速发展。
参考资料来源:
https://mp.weixin.qq.com/s/ZYSEou1ki0a4JVY2Nv8_SA.
https://zhuanlan.zhihu.com/p/388666777.
https://zhuanlan.zhihu.com/p/82758631.
https://zhuanlan.zhihu.com/p/493739360.
作者:木遥,来源:作者微博你可能已经看到ChatGPT今天宣布推出插件功能的新闻了。这可能是近期一系列进展中最令人惊讶和震撼的一个.
1900/1/1 0:00:00一道难题摆在鲍威尔和美联储面前:加息or不加息——加息将加速银行业危机的蔓延,但若不加息或降息,又将放任仍然高涨的通胀.
1900/1/1 0:00:00作者:北京大学国家发展研究院研究员何小贝这是一起区域性中小银行引发的全球系统性金融风险事件。硅谷银行和签字银行以资产规模而言在美国银行中分别仅排16和29,且与大型银行的规模相去甚远,但却引发了.
1900/1/1 0:00:00撰文:雾海3月16日币安官方宣布将上线第30个Launchpad项目SpaceID,此次售卖将基于投入模式,为BNB专场。具体为根据用户在币安5日的BNB日平均持仓确定用户可投入额度.
1900/1/1 0:00:00金色财经报道,据英国金融时报报道,瑞银提出以最高10亿美元收购瑞信。瑞士当局正计划修改该国法律,绕过股东对该交易的投票,因急于在周一之前敲定交易.
1900/1/1 0:00:00作者:AsaLi编译:DeFi之道介绍今天,主要的加密游戏——通过筹集资金,博人眼球和提高预期实现,从广义上讲,是“Web2.5游戏”的变体.
1900/1/1 0:00:00