原文标题:《干货|Schnorr签名如何提升比特币》,作者Stepan
在阅读Blockstream撰写的?MuSig?论文时,我一直在想象,这对于我一个比特币用户来说,到底意味着什么。我发现Schnorr签名的一些特性实在是非常棒而且便利,但某一些特性则非常烦人。在这篇文章里,我希望能跟各位分享我的想法。不过,我们先快速回顾一下。
椭圆曲线签名算法
当前比特币的所有权体系用的是?ECDSA。在签名一条消息?m?时,我们先哈希这条消息,得出一个哈希值,即?z=hash(m)?。我们也需要一个随机数k?。在这里,我们不希望信任随机数生成器,所以我们通常使用?RFC6979,基于我们所知的一个秘密值和我们要签名的消息,计算出一个确定性的k。
使用私钥?pk?,我们可以为消息?m?生成一个签名,签名由两个数组成:r和?s=(z+r*pk)/k。
然后,使用我们的公钥?P=pk*G?,任何人都可以验证我们的签名,也就是检查?(z/s)×G+(r/s)×P?的x坐标确为?r。
ECDSA算法图解。为便于说明,椭圆曲线作在实数域上?
这种算法是很常见的,也非常好用。但还有提升空间。首先,签名的验证包含除法和两次点乘法,而这些操作的计算量都非常大。在比特币网络中,每个节点都要验证每一笔交易,所以当你在网络中发出一笔交易时,全网几千个节点都要验证你的签名。因此,即使签名的过程开销变得更大,让验证签名变得更简单也还是非常有好处的。
V神、孙宇晨支持的生命科学组织VitaDAO拟设营利性公司推动长寿技术发展:4月6日消息,由以太坊创始人“V神”支持创立的生命科学研究去中心化组织VitaDAO在推特宣布,正在投票决定是否创建一家营利性公司来确保和分配长寿研究的资金。该公司将命名为 VitaTech,作为 VitaDAO 的子公司/附属公司运营,它将利用公共资金来授权美国大学开发的长寿技术,并支持它们的持续发展。除V神外,波场TRON创始人孙宇晨此前也曾大力支持VitaDAO的发展。
今年1月,VitaDAO宣布完成410 万美元融资,融资方包括Coinbase的前首席技术官 Balaji Srinivasan、全球最大的药企辉瑞的投资部门 Pfizer Ventures,这也是辉瑞在 Web3 领域的首笔投资。VitaDAO 表示将会利用这笔资金进一步资助长寿研究项目和将于明年从DAO中剥离出来的生物技术初创公司。
去年10月,孙宇晨向VitaDAO旗下“长寿奖基金”进行捐款,孙宇晨也因此次捐赠成为“长寿奖基金”的第二大捐赠者,仅次于以太坊创始人V神。[2023/4/6 13:47:30]
其次,节点在验证签名时,每个签名都要单独验证。在一个m-n的多签交易中,节点必须多次验证同一个签名。比如一笔7-11的多签名交易,里面包含了7个签名,网络中的每个节点都要分别验证7个签名。另外,这种交易的体积也非常大,用户必须为此付出多得多的手续费。
Schnorr签名
Schnorr签名的生成方式有些许不同。它不是两个标量?(r,s),而是一个点?R?和一个标量?s?。类似于ECDSA签名,R是一个椭圆曲线上的随机点?R=k*G。而签名的第二部分s的计算过程也有一些不同:?s=k+hash(P,R,m)?pk?。这里pk就是你的私钥,而?P=pk*G?是你的公钥,m就是那条消息。验证过程是检查?s*G=R+hash(P,R,m)*P。
BAYC #1626在以太坊永久销毁并在比特币区块链上铸造为“铭文5413”:2月13日消息,据BAYC #1626持有者Jason A. Williams在社交媒体称,NFT社区正在转向比特币区块链,Ordinals协议为数字藏品带来了真正的稀缺性,因此决定将BAYC #1626铸造在世界上最稀缺和最安全的区块链上,并将使用TeleBurn在以太坊区块链上永远销毁,之后也不会再回到以太坊,目前BAYC #1626在比特币区块链上铸造为“铭文 5413”。[2023/2/14 12:04:44]
图解Schnorr签名和验证?
这个等式是线性的,所以多个等式可以相加相减而等号仍然成立。这给我们带来了Schnorr签名的多种良好特性。
1.批量验证
在验证区块链上的一个区块时,我们需要验证区块中所有交易的签名都是有效的。如果其中一个是无效的,无论是哪一个——我们都必须拒绝掉整个区块。
ECDSA的每一个签名都必须专门验证,意味着如果一个区块中包含1000条签名,那我们就需要计算1000次除法和2000次点乘法,总计约3000次繁重的运算。
但有了Schnorr签名,我们可以把所有的签名验证等式加起来并节省一些计算量。在一个包含1000笔交易的区块中,我们可以验证:
Capriole Investment创始人:比特币哈希带指标显示矿工投降已结束:8月21日消息,据Capriole Investment创始人Charles Edwards在社交媒体上披露的比特币算力波动统计数据显示,矿工悲观情绪可能触及顶峰,这意味着所谓的矿工投降已经结束。CharlesEdwards分享了比特币矿工情绪指标哈希带(HashRibbon),数据显示该指标下跌时间维持了71天,创下历史第三长的矿工投降记录,比2021年持续时间更长,仅比2018年价格触底时短了2天。
哈希带指标于2019年构建,基于比特币的30天和60天移动平均线(MA)净哈希率之间的相关性设计,当30日均线跌破60日均线时表示矿工投降;当30日均线高于60日均线且价格上涨时,就表示安全的看涨信号已出现。[2022/8/21 12:38:04]
(s1+s2+…+s1000)×G=(R1+…+R1000)+(hash(P1,R1,m1)×P1+hash(P2,R2,m2)×P2+…+hash(P1000,R1000,m1000)×P1000)
这里就是一连串的点加法和1001次点乘法。已经是几乎3倍的性能提升了——验证时只需为每个签名付出一次重运算。
加密货币交易所Blockchain因向三箭资本发放贷款面临2.7亿美元的损失:7月8日消息,加密货币交易所Blockchain因向三箭资本发放贷款面临2.7亿美元的损失。加密货币交易所Blockchain CEO在股东信中表示,Blockchain.com仍保持流动性、偿付能力,我们的客户不会因此受到影响。(Coindesk)[2022/7/8 2:00:55]
两个签名的批量验证。因为验证等式是线性可加的,所以只要所有的签名都是有效的,这几个等式的和等式也必成立。我们节约了一些运算量,因为标量和点加法比点乘法容易计算得多。
2.密钥生成
我们想要安全地保管自己的比特币,所以我们可能会希望使用至少两把不同的私钥来控制比特币。一个在笔记本电脑或者手机上使用,而另一个放在硬件钱包/冷钱包里面。即使其中一个泄露了,我们还是掌控着自己的比特币。
当前,实现这种钱包的做法是通过2-2的多签名脚本。也就是一笔交易需要包含两个独立的签名。
有了Schnorr签名,我们可以使用一对密钥(pk1,pk2),并使用一个共享公钥?P=P1+P2=pk1*G+pk2*G?生成一个共同签名。在生成签名时,我们需要在两个设备上分别生成一个随机数,并以此生成两个随机点?Ri=ki*G,再分别加上?hash(P,R1+R2,m),就可以获得s1和s2了。最后,把它们都加起来即可获得签名?(R,s)=(R1+R2,s1+s2),这就是我们的共享签名,可用共享公钥来验证。其他人根本无法看出这是不是一个聚合签名,它跟一个普通的Schnorr签名看起来没有两样。
加密分析师:加密货币的最大传染风险在于Binance和Tether:金色财经报道,加密分析师venturefounder在社交媒体上表示,坦率地说,加密货币的最大传染风险在于Binance和Tether,如果其中一个发生了可怕的事情,这个行业将需要很长的时间来恢复。仅仅在5个交易所的冷钱包中,Binance就持有700,830个BTC,这相当于比特币总供应量的3.67%。[2022/6/30 1:41:24]
不过,这种做法有三个问题。
第一个问题是UI上的。要发起一笔交易,我们需要在两个设备上发起多轮交互——为了计算共同的R,为了签名。在两把私钥的情况下,只需访问一次冷钱包:我们可以在热钱包里准备好待签名的交易,选好k1并生成?R1=k1*G,然后把待签名的交易和这些数据一同传入冷钱包并签名。因为已经有了R1,签名交易在冷钱包中只需一轮就可以完成。从冷钱包中我们得到R2和s2,传回给热钱包。热钱包使用前述的签名交易,把两个签名加总起来即可向外广播交易了。
这在体验上跟我们现在能做到的没有什么区别,而且每当你加多一把私钥,问题就会变得更加复杂。假设你有一笔财富是用10把私钥共同控制的,而10把私钥分别存放在世界各地,这时候你要发送交易,该有多麻烦!在当前的ECDSA算法中,每个设备你都只需要访问一次,但如果你用上Schnorr的密钥聚合,则需要两次,以获得所有的Ri并签名。在这种情况下,可能不使用聚合,而使用各私钥单独签名的方式会好一些——这样就只需要一轮交互。
文章完成后,我得到了ManuDrijvers的反馈:在一个可证明安全性的多签名方案中,你需要3轮交互:
选择一个随机数ki以及相应的随机点Ri=ki\?G,然后告诉每一个设备Ri的哈希值ti=hash(Ri),然后每个设备都能确保你没有在知道其他人的随机数之后改变主意*
收集所有的数字Ri并计算公共的R
签名
第二个问题是已知的Rogue密钥攻击。这篇论文讲解得非常好,所以我就不赘述了。大概意思是如果你的其中一个设备被黑,并假装自己的公钥是?,那就可以仅凭私钥pk1便控制两个私钥共享的资金。一个简单的解决方案是,在设置设备时,要求使用私钥对相应的公钥签名。
还有第三个重大问题。你没法使用确定性的k来签名。如果你使用了确定性的k,则只需一种简单的攻击,黑客即可获得你的私钥。攻击如下:某个黑客黑入你的笔记本电脑,完全控制了其中一把私钥。我们感觉资金仍是安全的,因为使用我们的比特币需要pk1和pk2的聚合签名。所以我们像往常一样发起交易,准备好一笔待签名的交易和R1,发送给我们的硬件钱包,硬件钱包签名后将发回给热钱包……然后,热钱包出错了,没法完成签名和广播。于是我们再试一次,但这一次被黑的电脑用了另一个随机数——R1'。我们在硬件钱包里签名了同一笔交易,又将发回给了被黑的电脑。这一次,没有下文了——我们所有的比特币都不翼而飞了。
在这次攻击中,黑客获得了同一笔交易的两个有效的签名:和。这个R2是一样的,但是?R=R1+R2?和?R'=R1'+R2?是不同的。这就意味着黑客可以计算出我们的第二个私钥:s2-s2'=(hash(P,R1+R2,m)-hash(P,R1'+R2,m))?pk2?或者说?pk2=(s2-s2')/(hash(P,R1+R2,m)-hash(P,R1'+R2,m))。我发现这就是密钥聚合最不方便的地方——我们每次都要使用一个好的随机数生成器,这样才能安全地聚合。
3.Musig
MuSig?解决了其中一个问题——roguekey攻击将不能再奏效。这里的目标是把多方/多个设置的签名和公钥聚合在一起,但又无需你证明自己具有与这些公钥相对应的私钥。
聚合签名对应着聚合公钥。但在MuSig中,我们不是把所有联合签名者的公钥直接相加,而是都乘以一些参数,使得聚合公钥?P=hash(L,P1)×P1+…+hash(L,Pn)×Pn?。在这里,L=hash(P1,…,Pn)?——这个公共数基于所有的公钥。L的非线性特性阻止了攻击者构造特殊的公钥来发动攻击。即使攻击者知道他的?hash(L,Patk)×Patk?应该是什么,他也无法从中推导出Patk来——这就跟你想从公钥中推导出私钥是一样的。
签名构造的其它过程跟上面介绍的很像。在生成签名时,每个联合签名者都选择一个随机数ki并与他人分享?Ri=ki*G。然后他们把所有的随机点加起来获得?R=R1+…+Rn?,然后生成签名?si=ki+hash(P,R,m)?hash(L,Pi)?pki?。因此,聚合签名是?(R,s)=(R1+…+Rn,s1+…+sn)?,而验证签名的方法与以前一样:s×G=R+hash(P,R,m)×P?。
4.默克尔树多签名
你可能也注意到了,MuSig和密钥聚合需要*所有签名者签名一个交易*。但如果你想做的是2-3的多签名脚本呢?这时候我们能够使用签名聚合吗,还是不得不使用通常的OP_CHECKMULTISIG和分别签名?
先说答案,是可以的,但是协议上将有些许的不同。我们可以开发一个类似于OP_CHECKMULTISIG的操作码,只不过是检查聚合签名是否对应于公钥默克尔树上的一个元素。
举个例子,如果我们想用公钥P1、P2和P3组成一个2-3的多签名脚本,我们需要用这几把公钥的所有两两组合、、来构建一棵默克尔树,并把默克尔树根公布在锁定脚本中。
在花费比特币时,我们需要提交一个签名和一个证据,证明这个签名所对应的公钥位于由这个树根标记的默克尔树上。对于2-3多签名合约来说,树上只有3个元素,证据只需2条哈希值——那个我们想用的公钥组合的哈希值,还有一个邻居的。对于7-11多签名脚本来说,公钥组合有11!/7!/4!=330种,证据需要8条哈希值。通常来说,证据所包含的元素数量与多签名的密钥数量大体成正比,为?log2(n!/m!/(n-m))?。
但有了默克尔公钥树,我们就不必局限于m-n多签名脚本了。我们可以做一棵使用任意公钥组合的树。举个例子,如果我们有一个笔记本电脑,一个手机,一个硬件钱包和一个助记词,我们可以构建一棵默克尔树,允许我们使用笔记本电脑+硬件钱包、手机+硬件钱包或者单独的助记词来使用比特币。这是当前的OP_CHECKMULTISIG做不到的——除非你使用“IF-Else”式的流程控制来构造更复杂的脚本。
聚合公钥的默克尔树。不仅仅是多签名?
结论
Schnorr签名很棒,它解决了区块验证中的一些计算开销问题,也给了我们密钥聚合的能力。后者在使用时有些不便利,但我们不是在强迫大家使用它——无论如何,我们都可以仍旧使用普通的多签名方案,使用单独的、不聚合的签名。
我迫不及待想使用Schnorr签名,希望比特币协议能尽快纳入这种签名方案。
另外,我也真心喜欢?MuSig,它是个优雅的方案,论文也浅显易懂。我强烈建议各位有闲之时通读全文。
原文标题:《借贷业务或被起诉,CoinbaseCEO公开呛声SEC》9月8日,经历了加密货币市场昨晚大跌的投资者惊魂甫定.
1900/1/1 0:00:009月1日,以太坊通用扩容网络?Arbitrum?公测版正式上线,上线之初便得到了Uniswap、Sushiswap、Curve等众多DeFi蓝筹应用的追捧,不到两周时间.
1900/1/1 0:00:00DeFi数据1.DeFi总市值:1204.38亿美元 DeFi总市值数据来源:Coingecko2.
1900/1/1 0:00:00Cardano完成迄今为止最重要的升级。9月13日,Cardano开发公司Input?Output在推特表示:“升级成功,我们在部署了Alonzo升级,欢迎来到#Cardano新时代的开始”.
1900/1/1 0:00:00人间良时总有亲朋美酒,共赏风月、音好花开。山水万重亦能锦书遥寄,天涯此时、月圆人安。值此中秋佳节,虎符特别推出“过中秋来虎符抽盲盒”系列活动,无论新老用户,参与活动即可获取盲盒抽取次数,神秘大奖.
1900/1/1 0:00:00如果说我在过去几年中明白了一个道理,那就是:一个同步的区块空间无法满足链上所有应用的需求。在2018年时这一情况还不那么明显.
1900/1/1 0:00:00