来源/Sharpdata在数字货币领域似乎对量化交易有两种极端的看法:一种
认为量化交易通过高深的算法总是可以打败散户,然而对其工作原理及如何评估量化并不清楚,仅仅认为其是一棵摇钱树;另一种似乎认为量化交易不过是网格交易,仅仅是通过程序快速下单,并不具备人类高手拥有的交易真谛。这两种看法当然都有失偏颇,我们也暂且不展开详细说明,仅仅浅尝辄止地说明主要差异。量化交易总体上依赖于大数据分析制定“大概率”事件,通过数学模型验证并固化为策略,可以细分成多种类型,如套利、趋势、高频等等。不同的类型也有着不同的特点,比如高频交易有着人工主观交易无法比拟的交易速度,套利交易善于发现市场中瞬间的溢价,量化趋势交易不像主观交易更容易受到情绪波动的影响,不会像人一样遇到信号时期望自己做出更明智的决定而完全忘了之前制定好的策略。?而主观交易则善于发现难以量化的模式,运用多方面的创造力、影响力从而拥有量化程序并不具备的能力。
Web3策略游戏创作者平台Theia Studios完成240万美元融资:11月10日消息,据外媒报道,Web3策略游戏创作者平台Theia Studios宣布完成240万美元新一轮融资,Hashed、Snackclub、IVC、Mint Ventures、Taureon、Arcanum Capital、BigBrain Holdings、Lancer Capital、Ignite Group、Andover Ventures和Plum Ventures参投。
该公司旗下的Web3回合制策略游戏创作者平台为开发者提供了工具包,其中包括地图编辑器、资产管道、脚本框架、经济构建器等,帮助游戏创作者构建自己的策略游戏,其首款游戏“IconsofTheis”预计将在11月10日启动封闭Beta测试。(finsmes)[2022/11/10 12:42:37]
可以看出量化交易更注重数据分析,并通过程序使用历史数据回测来验证模型。但这并不是说主观交易应完全凭借灵感做出判断。对大多数人来说,直接拿出真金白银凭借自认为不错的“嗅觉与交易手法”就去市场大捞一笔恐怕会输的血本无归。即使主观交易不能像量化程序一样快速的对历史数据进行“回测”,也应不断通过历史数据锻炼自己对模式的熟练识别与应用。成熟的交易员往往对某一模式的应用经过了数千次的练习,才获得了超出常人的能力。毕竟通过历史发现模式、使用历史数据验证模式是提高交易能力的必经之路。这条路并不轻松,但也是战胜市场的必由之路。
摩根大通策略师:机构对比特币的兴趣将会增加:金色财经报道,美国银行业巨头摩根大通的全球市场策略师Nikolaos Panigirtzoglou认为机构对比特币的兴趣将会增加。Panigirtzoglou表示,对于那些想知道当前熊市阶段何时结束的人来说,比特币的主导地位是值得关注的趋势指标。分析师指出,比特币的主导地位在4月份“突然”从61%在一个多月内下降到40%。快速增长的山寨币主导地位通常表明加密货币市场泡沫过多。在整个市场崩盘后,比特币的主导地位在5月23日回升至48%。Panigirtzoglou指出,以牺牲山寨币为代价,流入比特币基金的资金有所改善。[2021/6/30 0:15:41]
接下来说说如何进行主观交易的回测,这里介绍一款不错的工具TradingView。也许有人对TradingView并不熟悉,这里简单介绍下。Tradingview是一个价格图表和分析软件,同时也是一个社交网络。投资者可以通过Tradingview查看各种不同金融市场和资产类别的价格图表,包括股票、货币对、债券、期货以及加密货币。在大家熟悉的网页端交易所都可以看到类似“ChartbyTradingView”这样的字样。因此一方面可以利用TradingView专业的图表功能,如数千种技术指标,其中还包括其他人贡献的自定义技术指标/模式;还可以将不同的交易对显示在同一张图上对比,这在使用PairsTrading策略时非常有用;或者查看秒级的K线图。另一方面可以使用TradingView同样强大的社交功能,每天众多专业的交易员在TradingView上分享自己的交易心得,以及下一步的价格预测。当然你不得不拥有一定的英文阅读能力。
DeFi策略游戏SOVI第2次销毁70,472美金:4月6日,DeFi策略游戏SOVI.Finance已实施对其生态代币SOVI Token第2次回购销毁,此次销毁与回购的总金额价值70,472美金,共计7,660枚SOVI:其中2374枚SOVI被直接打入HECO黑洞地址进行销毁;同时回购了5286枚SOVI为用户发放挖矿分红激励。
本次销毁回购距离前一次仅过去10天,本次销毁和回购的SOVI占总流通量的比例达到了2.67%,SOVI的流通量进一步通缩,目前剩余流通量287,456枚。本次销毁的TxID如下:9e3c1f8e59bba8084f53312ac250f2164376ee95415245b3231be6fc87fe。[2021/4/7 19:53:00]
这里推荐的仅仅是TradingView图表的一个小功能,即回测。首先访问TradingView的网站,输入并选择你所关心的某个交易所的交易对,比如我们选择币安的BTCUSDT交易对;接着调整好你所关心的K线粒度如1分钟还是1小时,添加技术指标等。然后就可以点击Replay按钮,这时会出现一条红线,它代表着你想从什么时间开始“回测”,选择好开始时间点击Play按钮,开始时间后的K线和技术指标都会被清空。想象着你回到了那个时间并不知道接下来的价格走势,完全根据历史数据进行判断。比如通过某个技术指标判断出现了个信号,你需要综合各种数据和走势判断当前是个不错的买入时机还是卖出时机,并可以在屏幕下方的TextNotes记录这时的想法、市场分析。验证你的判断,暂停并再次记录你的心得体会。
摩根士丹利策略师:今年的加密货币热潮应成为各国政府印钞厂的警告:12月10日消息,摩根士丹利策略师Ruchir Sharma在《金融时报》发表文章表示,今年比特币的激增可能仍将是一个泡沫,但即便泡沫破裂,今年对加密货币的热潮也应成为各国政府印钞厂的一个警告,尤其是美国。Ruchir表示,不要认为传统货币是人们永远信任的唯一价值储存手段或交换媒介,精通技术的人不会停止寻找替代品,直至找到或发明一种替代品。(金融时报)[2020/12/10 14:46:29]
随机换一个时间点,再次重复这一过程直到你感到信心十足。不要小看这个稍显枯燥的过程,它对于训练盘感非常的重要。当你准备好了走上数字货币的战场,如果在实盘中发现判断结果同回测时大相径庭,这时应及时分析总结,找到差异点并再次回测。
不过很遗憾TradingView的Replay功能针对免费用户仅提供日线级别的K线,大多数投资者更关心1分钟、5分钟、15分钟K线,此时需要升级到Pro版本。TradingView提供了30天Pro版本的试用,可以根据试用情况再做决定。如果不想为此支付费用,也可以尝试使用TradingView查看1/5/15分钟K线,通过鼠标把K线中你关心的时间挪到屏幕的右侧,然后通过键盘向右的按键模拟Replay。如果你尝试成为高阶玩家,TradingView的Pine脚本可以让你更加方便快捷的完成回测,PineScript是一种基于JavaScript的脚本语言,相对来说比较好掌握,但这里没有篇幅来介绍这种语言的常用用法了。感兴趣的读者可自行前往TradingView查看。
声音 | Tony:熊市下,运营架构臃肿或者策略单一的团队会面临被淘汰的风险:在本期金色相对论上,针对金色财经内容合伙人佟扬提出“随着交易团队越来越多,是否会出现显优势的量化团队大幅盈利?”的提问,Amber AI的创始合伙人Tony表示:这个问题可以从两个角度来说,一个是量化交易本身的周期性,二是从交易团队自身差异出发。
量化交易者之间更多是一个互相竞争的关系。现在熊市下无论是总市值还是交易量都面临着大幅度缩水,整个市场里因为错价而产生的利润会越来越少,竞争也会越来越激烈。此环境下,那些运营架构臃肿或者策略单一的团队会面临着被淘汰的风险,而剩下来的团队则可以分到利润。
行业周期而言,整个行业寒冬,总量变少,竞争更加激烈,但不代表所有团队都赚不到钱。团队还是存在差异,无论是策略的储备,风控,交易系统构架和搭建,对外融资,甚至是对挫折的承受能力,都是一个团队体现自己细微的差异的地方,也就是你能赚到钱而别人赚不到钱的核心优势。[2018/12/7]
正如没有一个量化策略会不经过历史数据回测直接上线,我们也推荐主观交易员同样通过回测快速锻炼交易的“感觉”。然而另一个量化交易的步骤未必被所有量化团队遵循,大多数交易员也直接忽略,即实盘模拟交易。
对量化团队来说,模拟交易是验证真实交易API稳定性、程序延迟,比如调用接口的延迟,数据解析的延迟,量化计算的带来的延迟等等。有时候这种延迟对最终的回报有着非常大的影响,尤其是针对高频交易。而稳定性同样重要,比如交易所计划外的维护,极端行情下滑点的变化等等。这个过程考察的是在完全follow策略执行的情况下真实环境中的表现是否与回测一致,更多的是对程序的验证与完善而不是针对策略本身。有的团队专人负责这部分,对高性能计算、并发编程等有较高的要求。当然也有的团队会忽略模拟交易,直接使用小资金量来验证上面的问题,但额外需要考虑的是在不同资金体量下对量化的影响,如分单的策略,资金利用率等。
在股票交易软件中通常会提供模拟账户,让用户在入金前来熟悉操作过程。而数字货币交易所大多没有这一功能,这也是市场的选择,因为并没有多少人会使用这一功能。我们这里强调的也并不是如何模拟操作以锻炼盘感,因为在使用模拟资金和真实资金时的心态是完全不一样的,这也是大多数主观交易员需要克服的。这里还是强调类似量化通过模拟交易的过程确认回测与模拟交易表现是统一的。这种统一不仅仅是感觉上的而更多是从数据上证明的。
为了验证模拟交易在回报、风险、成本等方面与回测程序一致,应对模拟交易做必要的记录。手工主观交易员如何完成完成高质量的模拟交易呢?这里提几点个人建议:
不要同时对过多的模式同时进行分析,人的注意力是有限的。把过多的不同但又类似的模式一同分析往往令人精神涣散,往往一种模式也没分析好。根据个人情况上限有所不同,通常不要超过5种模式。
对模式进行区分。每次意图交易时要十分明确我根据什么因素在哪种模式下进行交易。把不同模式混在一起,就像把不同患者的血液混合然后去做血检一样。
进入交易时就要明确退出策略。其止盈止损的点位是多少或无论怎样应该在哪个时间前完成平仓。当然并不是意味着一旦设立无法变更,而是说每次变更需要明确的模式,这样我们才能在统计上分析模式的正确率。
在具体实现上可以使用Excel的一个工作表代表一种模式,在前面明确模式的形态。下面每一行说明遇到这种模式时的具体操作,如开仓时间、平仓时间、开仓均价、平仓均价、仓位数量、止损点、止盈点、盈利/损失百分比,备注分析等。最后统计出一段时间内该模式的成功率与盈亏比例,并与回测时的数据进行对比。
善用工具辅助自己。埃隆马斯克除了创立的特斯拉和SpaceX,另一个公司Neuralink恐怕对人类未来影响更大。它利用机器智能和生物智能结合,使得人类终将成为半机器人。先不讨论这种未来的可能性,但至少善用机器智能辅助是正在进行的过程。对大多数人来说无法在一天绝大多数时间一直盯盘,尤其是像数字货币这种7*24小时交易的投资品种,模式的识别可以借助工具自动完成将极大提升交易员的效率。可以通过TradingView,Messari,Glassnode,Sharpdata等观测数据并提醒自己。
一段时间后分析如果出现回测与模拟结果不一致,一方面我们有可能找出模拟交易与回测的差异并对模拟交易做出修正。另一方面也可能是我们修正回测的一次良机,例如对回测中所忽略的信号进行补充并提高准确率。
回到主题,对主观交易员而言为什么模拟实盘交易同样重要呢?个人基于以下几点做出判断:
模式在过去成立,未必在现在同样成立。利用实时的数据可以对模型做出必要的修正使得其表现更佳。
相对量化或程序交易,手工交易员通常在更少的数据上进行回测与模拟交易,此时通过数据定量地统计模式的正确率至关重要。
尤其针对第二点,手工交易员在某些模式的识别可以优于量化程序,其模式难以使用计算机语言进行定量描述,经验让人更相信感觉而不是数据。当感觉受外部环境及个人情绪的影响较大,需要警惕感觉或经验的失灵,或过份地陷入对自己感觉的怀疑。此时通过模拟交易可以对该模型得出在实盘情况下定量而不是完全根据感觉的定性评估。模拟交易的结果往往更有助于个人感觉发挥更佳的作用。
善于思考、善于分析、善于总结是做好一份工作的必备条件,而对待数字货币交易这件事上你同样做到了吗?
Sharpdata,用数据洞察区块链。
标签:INGDINRADTRAeGamingFundsardinechainRadio CacaFootball Decentralized
5月13日,复杂美宣布获得Pre-A轮融资,这是产业区块链类公司最近一次披露融资进展。从那时算起,产业区块链进入融资空白期已经持续了75天.
1900/1/1 0:00:00作者/?LongHashMaggieFu/Rui数据可视化?/?LongHashXinheYu来源/LongHash在2020年,PoS增发系公链成为了市场最热门的话题之一.
1900/1/1 0:00:00本文来源:澎湃新闻澎湃新闻见习记者叶映荷??国内首本政务服务领域区块链应用的蓝皮书来了。7月16日,据北京市人民政府官网,北京市区块链工作专班专家组编制的《北京市政务服务领域区块链应用创新蓝皮书.
1900/1/1 0:00:00来源:新华日报作者:毛海军区块链通过密码学、分布式存储和对等网络等技术的融合,赋予了链上数据不可篡改、可追溯的特性,能够大幅降低信息造假风险,打破企业信息孤岛,推进信任社会的建立.
1900/1/1 0:00:00柬埔寨国家银行行长CheaSerey本周表示,该国已于本月试用名为Bakong的央行数字货币。据Cointelegraph报道,该银行于今年年初宣布将在一季度推出基于区块链的数字货币,不过目前该.
1900/1/1 0:00:00昨日,一则美国联邦法院将比特币定义为“货币”的新闻在中国社区引起了广泛讨论。但目前来看,其中有不少误读,本文将为大家一一澄清.
1900/1/1 0:00:00